Syllabus copy of courses 2019 – 2020

SOFT SKILLS LAB (SSP)

	Semester:	Corr	mon for al		OF I SKILI		ne : 2017
Course			urs / Week	I DI allello	Credits	Maximum Marks	ne . 2017
Course	Coue	по	urs / week		Creuits		
HU	204	L	Т	Р	С	Continuous Internal Assessment	TOTAL
	·	0	0	2	1	100	100
Course	Outcomes :	At the e	nd of the c	ourse, st	tudents will	be able to	
CO1:		nicate effe	ectively an			erpersonal relationship building s	kills with
CO2:				accomp	lish objecti	ves in a cordial atmosphere	
CO3:	Face inte	erviews, C	Ds and gi	ve prese	entations		
CO4:	Understa setting	and and d	levelop the	e etiquet	te necessar	y to present themselves in a profe	ssional
CO5 :	0	e Princip	les of Pers	onal effe	ectiveness		
				LIST O	F EXPERIN	TENTS	
1. Ic	e breaking	Activitie	s, Principl	es of Tir	ne and Stre	ss Management	
2. A	rt of speak	ing -1 (Pr	epared)				
3. Aı	rt of speaki	ng -2 (Ex	tempore)				
4. A	rt of writin	g - Essay	/ Picture	/ Story			
5. Bi	usiness eti	quette - 7	Celephone	and ema	ail		
6. Pi	resentatior	n Skills - I	Power poir	nt makir	ıg		
7. G	roup Discu	ission – (Objectives	and Skil	ls tested in	a GD, types of GD, Dos and don't	S
8. G	roup Discu	ission - P	ractice				
9. Te	eam work ·	- Drama ,	/ Skit / Ro	le play			
10. I	Paper / Pos	ster Prese	entation				
11. 1	Problem So	olving by	lateral thi	nking pu	ızzles		
12. I	Know your	General	Awarenes	s / Know	vledge - Qu	Z	
13. 1	Principles	of Person	al exceller	ice			
Referenc	e Books:						
1.	Stephen H London	R. Covey,	"The Seve	en Habit	s of Highly	Effective People", Pocket Books	Publishers,
2.	Priyadars Books	hani Patr	naik, "Grou	ıp Discu	ssion and l	nterview Skills with VCD", Found	dation
3.	Sangeeta PHI Learni			ishra, "C	Communica	tion Skills for Engineers and Scien	ntists",
4.	Shiv Kher	a, "You C	an Win", I	MacMilla	an India Pu	blishers, New Delhi	
5.	Campus http://can	Connec			CS - http	os://campuscommune.tcs.com;	Infosys -

	Semester:		cal Engineer	ring			cheme : 2017
Cour	rse Code	He	ours / Week		Credits	Maximum Marks	
Н	IU203	L	Т	Р	С	Continuous Internal Assessment	TOTAL
		0	0	2	1	100	100
Course	Outcomes : At	t the end o	of the course	e student	s will be ab	le to	
CO1:	Speak in E	nglish coi	nfidently, f	luently a	nd effectiv	rely	
CO2:	Exhibit tea	ım playing	g and leade	ership sk	ills		
CO3:	Give Prese	ntations e	effectively				
CO4:	Comprehe	nd the Ve	rbal and N	on-verba	al texts		
CO5:	Prepare Re	esume, Co	ompany pro	ofiles and	l Project p	presentations	
CO6:	Enhance p	ossibilitie	s of Job pr	ospects			
	1			LIST OF	EXPERIM	ENTS	
Focus in	n the lab is m	nore on flu	ency than	on accu	racy		
1. Ice br	eaking Activi	ties					
2. JAM							
3. Lister	ning Compreh	nension –	Practice tes	ts			
4. Oral	Presentation						
5. Prese	entation Strat	tegies					
6. Grou	p Discussion -	– Team Pl	aying, Lead	ership Sl	kills		
7. Deba	te						
8. PPT's	– Principles	and Form	ats				
9. Infor	mation Trans	fer – Verb	al to Non-v	erbal and	d Vice-Vers	a	
10. Res	ume Prepara	tion					
11. Com	pany Profilin	g					
12. Inter	rview Skills –	-					
13 Proj	ect Presenta		nal Intervie	ew			
13.110		uon					
Reference	ce Books:						
1. Com	munication S	kills, Sanj	jay Kumar	and Pus	hpaLata, C	Oxford University Press.	
2. Engli	sh Language	Laborato	ories, A Cor	nprehen	sive Manu	al, Nira Konar, PHI.	
3. Tech	nical Commu	inication,	3 E, Rama	n and Sh	arma, Oxf	ord University Press.	
4. Perso	onality Develo	opment a	nd Soft Ski	lls, Baru	n k. Mitra,	Oxford University Press.	

INTRODUCTION TO INFORMATION SYSTEMS (IIS)

V Semester: E	B.Tech						Schem	e: 2017
Course	Category	Hou	rs/Wee	ek	Credits	Max	imum Marks	
OE302	Open Elective - 1	L	Т	Р	С	Continuous Internal Assessmen	End Exam	TOTAL
		3	0	0	3	40	60	100

Sessional	Exam	Duration:2 H	ſS
-----------	------	---------------------	----

Course Outcomes: At the end of the course students will be able to

CO1: Understand the concepts of Computer architecture and functionalities of System software

CO2: Understand the page replacement and CPU Scheduling Algorithms

CO3: Understand the phases of software development life cycle and process models.

CO4: Design ER model for real life scenarios

CO5: Apply SQL commands to create, update, modify and retrieve data from the data bases.

CO6: Apply normalization techniques to normalize the database.

UNIT-I

Fundamentals of Computers & Computer Architecture: Introduction, Organization of a small computer, Central Processing Unit, Execution cycle, Instruction categories, measure of CPU performance, Memory, Input/output devices, BUS, addressing modes

System Software: Assemblers, Loaders and linkers, Compilers and interpreters.

UNIT-II

Operating System: Introduction, Memory management schemes, Page replacement algorithms, Process management, CPU scheduling algorithms.

Software engineering: Software engineering: Introduction to Software engineering, Life cycle of a software project, software Development models.

UNIT-III

Relational Database Management System: Introduction to DBMS, the database technology, data models, Database Users.

Entity Relationship (E-R) Modelling: Introduction, Notations, Modelling E-R Diagrams,

Case Studies, Merits and Demerits of E-R modelling.

UNIT-IV

Structured Query Language (SQL): Introduction to SQL, Data types, Data Definition language commands, Data Manipulation Language Commands and Data control Language Commands, Candidate Key, Primary key, Foreign key, Select Clause, Where Clause, Logical Connectives – AND, OR, Range Search, Pattern Matching, Order By, Group By, Set Operations – Union, Intersect and Minus, Aggregate Functions, Join Operations.

UNIT-V

Normalization:

Introduction, Need for Normalization, Process of Normalization, Types of Normal Forms (1 NF, 2 NF,

3 NF & BCNF), Merits and Demerits of Normalization.

Text Books:

1. Campus Connect Foundation Program – Computer Hardware and System Software

Concepts, Programming Fundamentals- Vol. – 1, INFOSYS.

2.Campus Connect Foundation Program – Relational Database Management System, Client Server Concepts, Introduction to Web Technologies - Vol. – 4, INFOSYS

3.Henry F. Korth& Abraham Silberschatz, - Data Base System Concepts, 5th Edition, 2005, c Graw hill

Reference Books:

1. M. Morris Mano [2011], [3 rd Edition], Computer system architecture, Pearson Education, 2011

- 2. Sommerville [2008], [7th Edition], Software Engineering, Pearson education.
- 3. Raghu Ramakrishna and Johannes Gehrke [2003], [3rd Edition], Data Base Management Systems, TATA McGraw Hil

4. Tanenbaum [2000], Modern Operating System, Pearson Education.

Web References:

1. <u>https://www.w3schools.com/sql/</u>

2. <u>https://www.geeksforgeeks.org/dbms/</u>

3. <u>https://www.tutorialride.com/software-engineering/software-engineering-tutorial.htm</u>

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second sessional exam. Question No.1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER / OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

METALLURGY AND WELDING LAB (MTW(P))

III Sen	nester:	Mechani	cal Engine	ering			Schem	e:2017
Course	e Code	Ho	urs / Week		Credits	Maximu	m Marks	
						Continuous		
МЕ	E206	L	Т	Р	С	Internal	End	
	2200					Assessment	Exam	TOTAI
		0	0	2	1	50	50	100
End Exa	am Duratio	n : 3 Hrs		I				
Course	Outcomes	• At the e	nd of the c	ourse st	udents will	he able to		
							and allows	ncing
CO1:	_	rgical mic		recogni	ze the mici	o structures of metal	is and anoys	using
CO2:		<u> </u>		guanah	tost for do	termination of harde	nability of m	otal
CO2:						bisture content, shear		
CO3:		-	oulding s		content, mo	Disture content, snear	r and compre	essive
CO4:	Prepare	welded j	oints usin	g Metal	Arc, MIG	and TIG welding pro	cess	
	-			LIST O	F EXPERIN	IENTS		
1. S	pecimen p	oreparatio	on					
2. S	tudy of M	etallurgic	al micros	cope an	d study of s	some structures of fe	rrous and no	on-
	ferrous sp	ecimens						
3. E	xperimen	t to find (GFN on Si	ieve Sha	ker			
4. E	xperimen	t to find p	percentag	e of clay	and perce	ntage of moisture in	the mouldin	g sand
5. P	ermeabili	ty test on	moulding	g sand				
6. S	hear test &	& Compre	ession test	t on san	d mould			
7. D	eterminir	ng hardne	ess of mat	erial afte	er various	neat treatment proce	esses	
8. D	eterminir	ng harden	ability us	ing Jom	iny end Qu	iench Apparatus		
9. E	xperimen	t on Arc v	welding, A	rc cutti	ng and Fire	e cracker welding		
10.	MIG weld	ing and T	esting of	weld cra	acks by die	penetrant test		
11.	Joining of	thin she	et metals	by Spot	welding			
12.	Joining th	in metal	plates by	Gas We	lding			
13.	Making of	f pet bottl	e and cap	using B	low mould	ing and Injection mo	oulding	
						and the second		
Note: S	tudent has	s to perfor	m at least	10 expe	riments fro	m the above list		

MECHANICS OF SOLIDS AND FLUIDS LAB (MSF(P))

IV Se	emester:	Mechani	cal Engine	ering			Scheme	: 2017			
Cour	ourse Code Hours / Week Credits Maximum Marks										
C	CE216	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		0	0	2	1	50	50	100			
End E	xam Duratio	n : 3 Hrs									
Cours	e Outcomes	: At the e	nd of the c	ourse, st	udents will	be able to					
CO1:	Understa	nd worki	ng of cent	rifugal p	oumps, sub	mersible pump and re	ciprocating	g pump			
CO2:	Understa	nd variou	is flow me	eters and	l the conce	pt of fluid mechanics					
CO3 :	Understa	nd proce	dures for	conduct	ing tensile,	torsion tests on mild s	steel specin	nens			
CO4 :	Determin	e the You	ıng's mod	ulus usi	ng deflecti	on test on beams and t	ensile test o	on			
CU4:	rods, tens	sion and o	compressi	on test o	on springs,	and impact tests on st	eel				
					F EXPERIN						
1.					ischarge, v	elocity and contraction	n for a smal	l orifice			
	by Cons	stant hea	d method	l							
			of coefficie	ent of dis	scharge for	an external mouthpie	ce by Const	tant			
	head m	lethod									
2. Det	ermination			U	en pipe line						
3.			enturime								
	b. Calibrat	tion of O	rificemete	r							
4. Per	formance te	est on sin	gle stage	centrifu	gal pump						
5. Per	formance te	est on sul	omersible	pump							
6. Per	formance te	est on Re	ciprocatir	ıg pump							
7. To	study the st	ress-stra	in charact	eristics	of Mild ste	el rod using Universal	Testing Ma	achine			
8. To	find the	modulus	of elast	icity of	given mat	erial by measuring	deflection ir	n simply			
su	pported bea	am									
9. To :	find the mo	dulus of	rigidity of	given m	aterial usi	ng Torsion Testing Ma	chine				
10. To	find the mo	dulus of	rigidity of	given ma	aterial usin	g Spring Testing Machin	ne				
11. To	o find modu	lus of ela	sticity by	conduct	ing flexura	l test on carriage sprin	g				
12	a. To find	Rock we	ll hardnes	ss numb	er of given	material					
12.	b. To find	impact s	trength (1	zod & C	harpy) usi	ng impact testing mach	nine				
Note:	Student has	to perfor	m at least	10 exper	riments fro	m the above list					

IV Sem	ester:	Mechanie	cal Engineer	ring			Sch	neme : 2017		
Course	urse Code Hours / Week Credits Maximum Marks									
ME	213	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		0	0	2	1	50	50	100		
End Exa	n Duration	: 3 Hrs								
Course (be able to				
CO1:		-				c turning and thread c	utting on			
	-		piece usin	-						
CO2:		0,	shaping,	milling a	and slottin	g operations on work p	piece using	relevant		
~ ~ ~ ~	machine									
CO3:	-	0 1			sing Tool	and cutter grinder				
CO4:	Prepare	pattern f	or casting							
				LIST OF	F EXPERIN	MENTS				
	-	ig on Lath								
2. Ta	aper turni	ing by cor	npound s	wivel me	ethod					
3. Eo	ccentric t	urning on	Lathe							
4. Ri	ight hand	thread cu	utting and	Left ha	nd thread	cutting on Lathe				
5. M	aking of a	a Single p	oint cuttii	ng tool b	y formed	grinding wheel on tool	cutter grin	der		
6. D	rilling, re	aming, ta	pping and	l counter	r sinking					
7. Pa	attern ma	king								
8. V	– groove o	cutting on	shaper							
9. Ke	ey way cu	tting on s	lotting ma	achine a	nd Spur g	ear cutting on milling r	nachine			
	Vood turn	_	-							
		0	Lathe Ma	achine						
	2		Radial D		lachine					
Note: St	udent has	to perfor	m at least	10 exper	iments fro	m the above list				

MACHINE TOOLS LAB (MT(P))

COMPUTER AIDED DRAFTING LAB (CAD(P))

IV Sem	ester:	Mechanic	al Enginee	ring			Scl	heme : 2017
Course	Code	Но	urs / Week	1	Credits	Maximum	Marks	1
ME	214	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		0	0	2	1	50	50	100
End Exar	n Duration	: 3 Hrs			1	1		
Course (Outcomes	: At the er	nd of the c	ourse, st	udents wil	l be able to		
CO1:	Underst	tand vario	ous AutoC	AD feat	ures			
CO2:	Draw 2	D models	using Aut	toCAD				
CO3:	Draw 3	D compon	ents usin	g AutoC	AD			
	I			LIST O	F EXPERI	MENTS		
1. In	troductio	on to CAD	software					
2. E	xercise o	n usage of	f Auto (CAD 2D	drawing c	commands		
3. E	xercise o	n usage of	f Auto (CAD 2D	editing co	ommands		
4. E	xercise o	n usage of	f Auto (CAD 2D	dimensio	n commands		
5. Ex	xercises o	n Auto CA	AD 2D dra	awings -	I			
6. Ex	ercises of	n Auto CA	D 2D drav	vings - Il	[
7. In	troductio	on to 3D M	Iodeling	using Au	itoCAD Sc	oftware		
8. M	odeling of	f Compone	ent in 3D ·	– V blocł	K			
9. M	odeling of	f Compone	ent in 3D ·	– Open I	Bearing			
10. N	Iodeling	of Compor	ient in 3D	– Angul	lar block			
11. N	Iodeling	of Compor	nent in 3D	– Dovet	tail Guide			
12. N	Iodeling	of Compor	ient in 3D	– Dovet	tail Bracke	t		
13. N	Iodeling	of Compor	ient in 3D	– Dovet	tail stop			
Note: St	udent has	s to perform	m at least	10 exper	iments fro	om the above list		

GEOMETRIC MODELLING LAB (GM(P))

V Sem	ester:	Mechanic	cal Enginee	ring			Scl	neme : 201
Course	e Code	Но	urs / Week	T	Credits	Maximum	Marks	I
ME	305	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAI
		0	0	2	1	50	50	100
End Exa	m Duratio	n : 3 Hrs		•				
Course (Dutcomes	: At the end	l of the cou	ırse, stud	ents will b	e able to		
CO1:	Unders	tand featur	es of CAT	IA and C	creo softwa	ire		
CO2:	Model 3	3D compon	ients using	g CATIA				
CO3:	Model 3	3D compon	ents using	g Creo				
CO4 :	Create a	assembly o	f machine	compon	ents using	Creo		
		•		-	EXPERI			
Part Mo	delling							
	0	f Componer	nt in 3D –	V block u	sing CATL	A		
2. M	odeling of	f Componer	nt in 3D –	Open Bea	aring using	CATIA		
3. M	odeling of	f Componer	nt in 3D –	Angular	block using	CATIA		
	-	f Componer	_	-				
	5	-			0	Creo Parametric		
						Creo Parametric		
	-	-	_	-				
	5	-				g Creo Parametric		
8. M	odeling of	t Componer	nt in 3D –	Dovetail	Bracket us	ing Creo Parametric		
9. M	odeling of	f Componer	nt in 3D –	Dovetail	stop using	Creo Parametric		
	ly Modelli	-						
	-	of Oldham's		using Ci	reo Param	etric		
	•	of a knuckle	•					
	ĩ	of screw jac						
4. A	ĩ	of a footstep	Ŭ,					
	ssembly o	of a stuffing						
		of a square						

THERMAL ENGINEERING LAB (TE(P))

V Sem			U	ring				heme : 2017			
Course	rse Code Hours / Week Credits Maximum Marks										
ME	306	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAI			
		0	0	2	1	50	50	100			
End Exa	n Duration	: 3 Hrs									
Course (Dutcomes :	At the end	d of the cou	ırse, stud	ents will b	e able to					
CO1:			-			w valve timing diagram	0				
CO2:			ance chara rical loadir		s of four st	roke diesel engines usir	ng hydraulic	,			
CO3:		,		0	ur stroke o	liesel engine					
CO4:	Evaluate	e performa	ance chara	cteristic	s of blowe	and compressor					
CO5:	Determi	ne the frie	ction powe	r for MP	FI engine						
CO6:	Underst	and the va	arious com	ponents	of I.C eng	ine					
				LIST OF	EXPERI	MENTS					
1. a) Stu	dy of I.C.	Engine ar	nd Valve T	ming Di	agram of a	4-stroke engine					
b) De	eterminin	g the Flas	h and Fire	Point of	a given oi	l using Pensky apparatu	IS				
2. Load	test on 10	H.P, two	cylinder d	iesel eng	ine using	Hydraulic loading					
3. Heat	oalance te	est on 5 H.	P, single c	ylinder d	liesel engi	ne using electrical loadi	ng				
4. Retar	dation tes	t on 5 H.P	, single cy	linder di	esel engin	e using mechanical load	ling				
5. Morse	e test on M	APFI engi	ne								
6. Perfor	rmance te	st on Two	stage reci	procating	g air comp	ressor					
7. Perfor	mance te	st on Blov	ver rig								
8. Load	test on 5 I	H.P, single	e cylinder o	liesel en	gine with I	D.C. generator loading					
9. Deter		theoretica	l power co	efficient	of a labora	atory model wind turbin	ne using win	d			
10. Prac	ticing of I	Dis-Assem	bly/Assen	bly of I.	C. Engine						
11. Dete	rmining t	he % emis	sions of 4	stroke di	iesel engir	e using exhaust gas ana	lyser				
-	•	nd the cur									
1. Load load		H.P diesel	engine fue	elled with	n blend of	Biodiesel subjected to D	O.C. generato	or			
	n Vortex	tube									
Noter St	udent has	to perfor	m at least	10 evnor	iments fro	m the above lists.					
11016. 31			in at icast	10 exper	intents ilt	in the above lists.					

ENGINEERING METROLOGY LAB (EMT(P))

VI Sem	ester:	Mechani	cal Engineer	ring			Scl	neme : 2017
Course	Code	Но	urs / Week		Credits	Maximum	Marks	
ME	312	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		0	0	2	1	50	50	100
End Exa	m Duration	: 3 Hrs						
Course (Dutcomes :	At the end	l of the cou	rse stude	ents will be	able to		
CO1:	Measure	dimensi	ons of Line	ar, angu	lar, circula	ar objects using appropr	iate equipm	ent
CO2:				_		ads elements using met		
			_				iology equi	Jinein
CO3:			charts for t	_	_			
CO4:	Evaluate	e standard	l times usi	ng work	measurem	ent technique		
					F EXPERI	MENTS		
1. M	easureme	nt of para	meters of	Screw Tł	nreads			
2. M	easureme	nt of angl	e of Taper	plug gau	ıge			
3. M	easureme	nt of angl	e of Taper	ring gau	ge			
4. M	easureme	nt of co-o	rdinates of	f Jig plat	e			
5. M	easureme	nt of tape	r angle of a	an object	t using Sin	e bar and Bevel Protrac	tor	
6. a)	. Measure	ment of a	ngle of the	V-block	using ball	and height gauges		
1	o). Measui	ement of	Radius of	Curvatu	re of a ring	5		
7. M	easureme	nt of Gea	r paramete	rs using	gear tooth	vernier callipers		
8. a)	. To find s	mall angl	es and len	gth meas	surement o	on objects using Tool Ma	akers micro	scope
						on objects using Profile		_
9. M	easureme	nt of surfa	ace roughn	ess usin	g surface 1	oughness tester		
10. V	Vork Study	/- (a) Metl	nod study (b) Time s	study			
	•		ntrol – X b		•			
12. A	Acceptance	e Samplin	g					
	-	_	pometric (data usir	ng "Anthro	pometer"		
Note: St	udent has	to perfor	m at least	10 exper	iments fro	m the above lists		

DATABASE AND COMPUTATIONS PRACTICE LAB (DBC(P))

vi Sen	nester:	Mechanic	al Enginee	ring			Sc	heme : 201
Course	e Code	Но	urs / Week	T	Credits	Maximum	Marks	
MF	2313	L	Т	Р	С	Continuous Internal Assessment	End Exam	ΤΟΤΑΙ
		0	0	2	1	50	50	100
End Exa	m Duratio	n : 3 Hrs			1	l		
Course	Outcomes	: At the end	l of the cou	ırse, stud	lents will b	e able to		
CO1:	Unders	tand the SO	QL concep	ots				
	Execute	e the soluti	ons of SQ	L queries	s for creati	ng the Tables and Funct	tion for retri	eving
CO2:	and ma	nipulation	of Data					
CO3:	Unders	tand the ba	asic MATI	AB oper	ations			
CO4:	Solve th	ne mathem	atical pro	blems us	ing MATL	AB		
				LIST OI	F EXPERI	MENTS		
Part A -	SOL							
	-	on to Datab	ase Mana	gement	Systems			
2. C	reating Ta	ables						
		nd Manipu	lation of a	lata in ta	ables			
		f Data from						
			Tables					
	perators							
6. S	QL Funct	ions						
7. Se	et operato	ors and join	IS					
Part B -	- MATLA	В						
1. B	asics							
2. M	latrix Ope	erations						
3. C	reating a	script file						
4. G	enerating	g Graphs						
Additio	nal Exerc	ises						
1. S	ub Querie							
	ormatting	g Commano	ds (SQL)					
2. F		g (MAT LAI						

HEAT TRANSFER LAB (HT(P))

VI Semester:		Mechanical Engineering			Scheme : 2017				
Course Code		Hours / Week			Credits	Maximum Marks			
ME314		L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
		0	0	2	1	50	50	100	
End Exa	m Duratio	n : 3 Hrs							
Course (Dutcomes	: At the end	l of the cou	ırse stud	ents will be	able to			
CO1:	Determ	Determine thermal conductivity and heat transfer coefficient through metals and powders							
CO2:	Apply h	Apply heat transfer concepts to interpret heat transfer rate of composite walls, fins							
CO3:	Analyze	Analyze the performance of heat exchangers							
CO4:	Apply t	pply the radiation concepts on different heat transfer equipment							
				LIST OI	F EXPERI	MENTS			
1. Te	est on con	nposite wa							
2. a)	. Test on I	Lagged pipe	9						
I	b). Test o	n Lagged s	phere						
3. a)	. Test on	emissivity	apparatus	5					
ļ	b). Test o	n critical fl	ux appara	tus					
4. Te	est on Ste	fan Boltzm	iann appa	ratus					
5. Te	est on Na	tural conve	ection Equ	ipment					
6. Te	est on pin	fin appara	atus						
7. Te	est on He	at Exchang	ger						
8. Test on Metal rod equipment									
9. Te	est on Dro	op wise and	d Film wis	e conder	nsation app	paratus			
10. I	Performa	nce test on	refrigerat	ion moto	or				
		ond the cur							
11. 7	ſest on ur	nsteady sta	te heat tra	unsfer ap	paratus				
Note: St	udent ha	s to perfor	m at least	10 expe	riments fro	om the above lists			

ME405: CAE LAB (CAEP) (For ME -VII Semester)

Scheme: 2013Internal Assessment: 30End Exam: 70End Exam Duration: 3 Hrs

	L	T/D	Ρ	С
ļ	-	-	3	2

Course objective:

To get familiarize with analysis of different structures using ANSYS

Course outcomes:

The student will be able to do

- 1. Stress analysis of trusses
- 2. Stress analysis of beams
- 3. Stress analysis of 2D and 3D structures
- 4. Thermal analysis of plate.

List of experiments using ANSYS

- 1. Introduction to ANSYS software
- 2. Analysis of 2D Truss
- 3. Analysis of plate with a hole subjected to tensile load
- 4. Analysis of flat rectangular plate with a hole under axi-symmetric conditions
- 5. Analysis of a bracket
- 6. Stress and deflection Analysis of cantilever beams
- 7. Stress analysis of simply supported beams
- 8. Analysis of bars with different materials
- 9. Analysis of taper bar
- 10. Coupled structural and thermal analysis
- 11.Exercise on simple conduction
- 12. Analysis of square plate considering conduction and convection
- 13. Model analysis of beams

ME406: CAM LAB (CAMP) (For ME -VII Semester)

Scheme: 2013Internal Assessment: 30End Exam: 70End Exam Duration: 3 Hrs

L	T/D	Ρ	С
-	-	3	2

Course objective:

To get familiarize with different manufacturing software

Course outcomes:

After completion of laboratory students are able to

1. Simulate components in ESPIRIT CAM, MASTER CAM, CNC TUTOR.

2. Developing CNC part programs using G and M codes and manufacture prototypes on CNC machines.

3. Produce simple components on 3D printer.

LIST OF EXPERIMENTS

- 1. CNC Part Programming on ESPIRIT CAM LATHE.
- 2. CNC Part Programming on ESPIRIT CAM MILLING.
- 3. CNC Part Programming on MASTER CAM LATHE.
- 4. CNC Part Programming on MASTER CAM MILLING.
- 5. Producing Work piece on HITECH CNC LATHE(Step Turning)
- 6. Producing Work piece on HITECH CNC LATHE (Taper Turning).
- 7. Producing Work piece on HITECH CNC LATHE (Radius turning)
- 8. Producing Work piece on HITECH CNC MILLING (Model-1)
- 9. Producing Work piece on HITECH CNC MILLING (Model-2)
- 10. Producing a simple model using 3D Printing.

ME410: DYNAMICS & INSTRUMENTATION LAB (DIN(P)) (For ME -VIII Semester)

Scheme: 2013Internal Assessment: 30End Exam: 70End Exam Duration: 3 Hrs

L	T/D	Ρ	С
-	-	3	2

Course objective:

To study the static and dynamic behaviour of machines **Course outcomes:** Students will be able to

- 1. Understand and use various measurement methods
- 2. Understand and verify the laws governing the dynamics of machines
- 3. Understand the case studies in the field of Vibration.

LIST OF EXPERIMENTS

DYNAMICS

- 1. Determination of Radius of Gyration of Connecting Rod
- 2. Longitudinal Vibrations of Spring-Mass System.
- 3. Experiment on Governors
- 4. Static and Dynamic balancing of rotating masses and reciprocating masses
- 5. Velocity & Acceleration of Cam & Follower
- 6. Test on Gyroscope
- 7. Study of Damped and Undamped Torsional Vibration
- 8. Torsional Vibration of Single and Two Rotor System
- 9. Verification of Dunkerly's Rule
- 10. Critical speed or Whirling speed of shaft

INSTRUMENTATION

- 1. Test on Instrumentation Tutors
- 2. Calibration of Dead Weight Presser Gauge.
- 3. Study of simple control systems
- 4. Calibration of rotameter